Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Wireless connectivity is becoming common in increasingly diverse personal devices, enabling various interoperation- and Internet-based applications and services. More and more interconnected devices are simultaneously operated by a single user with short-lived connections, making usable device authentication methods imperative to ensure both high security and seamless user experience. Unfortunately, current authentication methods that heavily require human involvement, in addition to form factor and mobility constraints, make this balance hard to achieve, often forcing users to choose between security and convenience. In this work, we present a novel over-the-air device authentication scheme named AEROKEY that achieves both high security and high usability. With virtually no hardware overhead, AEROKEY leverages ubiquitously observable ambient electromagnetic radiation to autonomously generate spatiotemporally unique secret that can be derived only by devices that are closely located to each other. Devices can make use of this unique secret to form the basis of a symmetric key, making the authentication procedure more practical, secure and usable with no active human involvement. We propose and implement essential techniques to overcome challenges in realizing AEROKEY on low-cost microcontroller units, such as poor time synchronization, lack of precision analog front-end, and inconsistent sampling rates. Our real-world experiments demonstrate reliable authentication as well as its robustness against various realistic adversaries with low equal-error rates of 3.4% or less and usable authentication time of as low as 24 s.more » « less
-
Fariselli, Piero (Ed.)Predicting mutation-induced changes in protein thermodynamic stability (ΔΔG) is of great interest in protein engineering, variant interpretation, and protein biophysics. We introduce ThermoNet, a deep, 3D-convolutional neural network (3D-CNN) designed for structure-based prediction of ΔΔGs upon point mutation. To leverage the image-processing power inherent in CNNs, we treat protein structures as if they were multi-channel 3D images. In particular, the inputs to ThermoNet are uniformly constructed as multi-channel voxel grids based on biophysical properties derived from raw atom coordinates. We train and evaluate ThermoNet with a curated data set that accounts for protein homology and is balanced with direct and reverse mutations; this provides a framework for addressing biases that have likely influenced many previous ΔΔG prediction methods. ThermoNet demonstrates performance comparable to the best available methods on the widely used S sym test set. In addition, ThermoNet accurately predicts the effects of both stabilizing and destabilizing mutations, while most other methods exhibit a strong bias towards predicting destabilization. We further show that homology between S sym and widely used training sets like S2648 and VariBench has likely led to overestimated performance in previous studies. Finally, we demonstrate the practical utility of ThermoNet in predicting the ΔΔGs for two clinically relevant proteins, p53 and myoglobin, and for pathogenic and benign missense variants from ClinVar. Overall, our results suggest that 3D-CNNs can model the complex, non-linear interactions perturbed by mutations, directly from biophysical properties of atoms.more » « less
-
Abstract Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.more » « less
-
Abstract Numerous observations suggest that there exist undiscovered beyond‐the‐standard‐model particles and fields. Because of their unknown nature, these exotic particles and fields could interact with standard model particles in many different ways and assume a variety of possible configurations. Here, an overview of the global network of optical magnetometers for exotic physics searches (GNOME), the ongoing experimental program designed to test a wide range of exotic physics scenarios, is presented. The GNOME experiment utilizes a worldwide network of shielded atomic magnetometers (and, more recently, comagnetometers) to search for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin. The temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion‐like particle domain walls), axion‐like particle stars, solitons of complex‐valued scalar fields (Q‐balls), stochastic fluctuations of bosonic dark matter fields, a solar axion‐like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic astrophysical events such as binary black hole mergers are surveyed.more » « less
An official website of the United States government

Full Text Available